З цієї книги
Результати 1-3 із 84
Сторінка 437
( 10 ) p = pi 에서 ( 6 )式= ( 9 )式 으로 하면 , 이에 依 한 C 의 값 이 決定 되며 ,溫度上昇 에 依 한 應力變化 로서 Etat C = k 이 두 個 의 C 의 값 의 合 을 ( 3 ) ( 7 ) 에 (代 하면 된다 .結局( 3 ) , ( 6 )式, ( 7 )式及( 1 ) + ( 4 ) ( 2 ) + 5 ) ...
( 10 ) p = pi 에서 ( 6 )式= ( 9 )式 으로 하면 , 이에 依 한 C 의 값 이 決定 되며 ,溫度上昇 에 依 한 應力變化 로서 Etat C = k 이 두 個 의 C 의 값 의 合 을 ( 3 ) ( 7 ) 에 (代 하면 된다 .結局( 3 ) , ( 6 )式, ( 7 )式及( 1 ) + ( 4 ) ( 2 ) + 5 ) ...
Сторінка 479
그리고 , 다시 兩端 의 을 하면 接獨 은 狀 으로 되므로 接 을 로 하고 2x / a 의 國 k ( 2x / a ) 를 導入 해서 接獨應力分布 를 p ( x ) = pok ( 2x / a ) • ( 25 ) 로 해서 k ( 2x / a ) 를 定 하자 . Po 는 Fig3 과 같이 = 0 에 있어서 의 의 이고 ...
그리고 , 다시 兩端 의 을 하면 接獨 은 狀 으로 되므로 接 을 로 하고 2x / a 의 國 k ( 2x / a ) 를 導入 해서 接獨應力分布 를 p ( x ) = pok ( 2x / a ) • ( 25 ) 로 해서 k ( 2x / a ) 를 定 하자 . Po 는 Fig3 과 같이 = 0 에 있어서 의 의 이고 ...
Сторінка 480
고 생각 하면 , ZI = Air2 + 2H x y + Biy2 22 = A2x2 + 2Hery + Baye 로 表示 할 수 있을 것이다 . 이 Z1 , 2 를 가지고 다시 ty 의 項 을 消去 할 수 있는 새로운 座標系 를 定 하면 , 1 +22 = Axe + By2 의 形態 로 놓을 수 있다 .
고 생각 하면 , ZI = Air2 + 2H x y + Biy2 22 = A2x2 + 2Hery + Baye 로 表示 할 수 있을 것이다 . 이 Z1 , 2 를 가지고 다시 ty 의 項 을 消去 할 수 있는 새로운 座標系 를 定 하면 , 1 +22 = Axe + By2 의 形態 로 놓을 수 있다 .
Відгуки відвідувачів - Написати рецензію
Не знайдено жодних рецензій.