Зображення сторінки
PDF
ePub

feet more or less tilted. The same movements are seen in the feet of the swan, and in those of swimming birds generally (fig. 48).

One of the most exquisitely constructed feet for swimming and diving purposes is that of the grebe (fig. 49). This foot.

[graphic]

FIG. 49.-Foot of Grebe (Podiceps). In this foot each toe is provided with its swimming membrane; the membrane being closed when the foot is flexed, and expanded when the foot is extended. Compare with foot of swan (fig. 48), where the swimming membrane is continued from the one toe to the other.-(After Dallas.)

consists of three swimming toes, each of which is provided with a membranous expansion, which closes when the foot is being drawn towards the body during the back stroke, and opens out when it is being forced away from the body during the effective stroke.

[ocr errors][merged small]

FIG. 50.-Diagram representing the double waved track described by the feet of swimming birds. Compare with figs. 18 and 19, pp. 37 and 39, and with fig. 32, p. 68.- Original.

In swimming birds, each foot describes one side of an ellipse when it is extended and thrust from the body, the other side of the ellipse being described when the foot is flexed and drawn towards the body. The curve described by the right foot when pushed from the body is seen at the arrow of fig. 50; that formed by the left foot when drawn towards the body, at the arrow s of the same figure. The curves formed

G

by the feet during extension and flexion produce, when united in the act of swimming, waved lines, these constituting a chart for the movements of the extremities of swimming birds.

There is consequently an obvious analogy between the swimming of birds and the walking of man (compare fig. 50, p. 97, with fig. 19, p. 39); between the walking of man and the walking of the quadruped (compare figs. 18 and 19, pp. 37 and 39); between the walking of the quadruped and the swimming of the walrus, sea-bear, and seal; between the swimming of the seal, whale, dugong, manatee, and porpoise, and that of the fish (compare fig. 32, p. 68, with figs. 18 and 19, pp. 37 and 39); and between the swimming of the fish and the flying of the insect, bat, and bird (compare all the foregoing figures with figs. 71, 73, and 81, pp. 144 and 157).

Flight of the Flying-fish; the kite-like action of the Wings, etc.Whether the flying-fish uses its greatly expanded pectoral fins

[graphic]

FIG. 51.-The Flying-fish (Exocatus exsiliens, Linn.), with wings expanded and elevated in the act of flight (vide arrows) This anomalous and interesting creature is adapted both for swimming and flying. The swimming-tail is consequently retained, and the pectoral fins, which act as wings, are enormously increased in size.-Original.

as a bird its wings, or only as parachutes, has not, so far as I am aware, been determined by actual observation. Most observers are of opinion that these singular creatures glide up the wind, and do not beat it after the manner of birds; so that their flight (or rather leap) is indicated by the arc of a circle, the sea supplying the chord. I have carefully examined the structure, relations, and action of those fins, and am satisfied in my own mind that they act as true pinions within

certain limits, their inadequate dimensions and limited range alone preventing them from sustaining the fish in the air for indefinite periods. When the fins are fully flexed, as happens when the fish is swimming, they are arranged along the sides of the body; but when it takes to the air, they are raised above the body and make a certain angle with it. In being raised they are likewise inclined forwards and outwards, the fins rotating on their long axes until they make an angle of something like 30° with the horizon-this being, as nearly as I can determine, the greatest angle made by the wings during the down stroke in the flight of insects and birds.

The pectoral fins, or pseudo-wings of the flying-fish, like all other wings, act after the manner of kites-the angles of inclination which their under surfaces make with the horizon varying according to the degree of extension, the speed acquired, and the pressure to which they are subjected by being carried against the air. When the flying-fish, after a preliminary rush through the water (in which it acquires initial velocity), throws itself into the air, it is supported and carried forwards by the kite-like action of its pinions ;-this action being identical with that of the boy's kite when the boy runs, and by pulling upon the string causes the kite to glide upwards and forwards. In the case of the boy's kite a pulling force is applied to the kite in front. In the case of the flyingfish (and everything which flies) a similar force is applied to the kites formed by the wings by the weight of the flying mass, which always tends to fall vertically downwards. Weight supplies a motor power in flight similar to that supplied by the leads in a clock. In the case of the boy's kite, the hand of the operator furnishes the power; in flight, a large proportion of the power is furnished by the weight of the body of the flying creature. It is a matter of indifference how a kite is flown, so long as its under surface is made to impinge upon the air over which it passes. A kite will fly effectually when it is neither acted upon by the hand nor a weight, provided always there is a stiff breeze blowing. In flight one of two things

1

"On the Various Modes of Flight in relation to Aëronautics." By the Author.-Proceedings of the Royal Institution of Great Britain, March 1867.

is necessary. Either the under surface of the wings must be carried rapidly against still air, or the air must rush violently against the under surface of the expanded but motionless wings. Either the wings, the body bearing them, or the air, must be in rapid motion; one or other must be active. To this there is no exception. To fly a kite in still air the operator must run. If a breeze is blowing the operator does not require to alter his position, the breeze doing the entire work. It is the same with wings. In still air a bird, or whatever attempts to fly, must flap its wings energetically until it acquires initial velocity, when the flapping may be discontinued; or it must throw itself from a height, in which case the initial velocity is acquired by the weight of the body acting upon the inclined planes formed by the motionless wings. The flapping and gliding action of the wings constitute the difference between ordinary flight and that known as skimming or sailing flight. The flight of the flying-fish is to be regarded rather as an example of the latter than the former, the fish transferring the velocity acquired by the vigorous lashing of its tail in the water to the air,—an arrangement which enables it to dispense in a great measure with the flapping of the wings, which act by a combined parachute and wedge action. In the flying-fish the flying-fin or wing attacks the air from beneath, whilst it is being raised above the body. It has no downward stroke, the position and attachments of the fin preventing it from descending beneath the level of the body of the fish. In this respect the flying-fin of the fish differs slightly from the wing of the insect, bat, and bird. The gradual expansion and raising of the fins of the fish, coupled with the fact that the fins never descend below the body, account for the admitted absence of beating, and have no doubt originated the belief that the pectoral fins are merely passive organs. If, however, they do not act as true pinions within the limits prescribed, it is difficult, and indeed impossible, to understand how such small creatures can obtain the momentum necessary to project them a distance of 200 or more yards, and to attain, as they sometimes do, an elevation of twenty or more feet above the water. Mr. Swainson, in crossing the line in 1816, zealously attempted

to discover the true action of the fins in question, but the flight of the fish is so rapid that he utterly failed. He gives it as his opinion that flight is performed in two ways,—first by a spring or leap, and second by the spreading of the pectoral fins, which are employed in propelling the fish in a forward direction, either by flapping or by a motion analogous to the skimming of swallows. He records the important fact, that the flying-fish can change its course after leaving the water, which satisfactorily proves that the fins are not simply passive structures. Mr. Lord, of the Royal Artillery,1 thus writes of those remarkable specimens of the finny tribe :"There is no sight more charming than the flight of a shoal of flying-fish, as they shoot forth from the dark green wave in a glittering throng, like silver birds in some gay fairy tale, gleaming brightly in the sunshine, and then, with a mere touch on the crest of the heaving billow, again flitting onward reinvigorated and refreshed."

Before proceeding to a consideration of the graceful and, in some respects, mysterious evolutions of the denizens of the air, and the far-stretching pinions by which they are produced, it may not be out of place to say a few words in recapitulation regarding the extent and nature of the surfaces. by which progression is secured on land and on or in the water. This is the more necessary, as the travelling-surfaces employed by animals in walking and swimming bear a certain, if not a fixed, relation to those employed by insects, bats, and birds in flying. On looking back, we are at once struck with the fact, remarkable in some respects, that the travellingsurfaces, whether feet, flippers, fins, or pinions, are, as a rule, increased in proportion to the tenuity of the medium on which they are destined to operate. In the ox (fig. 18, p. 37) we behold a ponderous body, slender extremities, and unusually small feet. The feet are slightly expanded in the otter (fig. 12, p. 34), and considerably so in the ornithorhynchus (fig. 11, p. 34). The travelling-area is augmented in the seal (fig. 14, p. 34; fig. 36, p. 74), penguin (figs. 46 and 47, pp. 91 and 94), sea-bear (fig. 37, p. 76), and turtle (fig. 44, p. 89). In the triton (fig. 45, p. 89) a huge swimming-tail is added to the 1 Nature and Art, November 1866, p. 173.

« НазадПродовжити »