Зображення сторінки
PDF
ePub

movement effects all this mechanically. When the limb has swung forward as far as the inclination of the body at the time will permit, it reverses pendulum fashion; the back stroke of the pendulum actually placing the foot upon the ground by a retrograde, descending movement. When the right leg with which we commenced is extended and firmly placed upon the ground, and the trunk has assumed a nearly vertical position, the left leg is flexed, elevated, and the trunk once more bent forward. The forward inclination of the trunk necessitates the swinging forward of the left leg, which, when it has reached the point permitted by the pendulum movement, swings back again to the extent necessary to place it securely upon the ground. These movements are repeated at stated and regular intervals. The retrograde movement of the limb is best seen in slow walking. In fast walking the pendulum movement is somewhat interrupted from the limb being made to touch the ground when it attains a vertical position, and therefore before it has completed its oscillation.1 The swinging forward of the body may be said to inaugurate the movement of walking. The body is slightly bent and inclined forwards at the beginning of each step. It is straightened and raised towards the termination of that act. The movements of the body begin and terminate the steps, and in this manner regulate them. The trunk rises vertically at each step, the head describing a slight curve well seen in the walking of birds. The foot on the ground (say the right foot) elevates the trunk, particularly its right side, and the weight of the trunk, particularly its left side, depresses the left or swinging foot, and assists in placing it on the ground. The trunk and limbs are active and passive by turns. walking, a spiral wave of motion, most marked in an anteroposterior direction (although also appearing laterally), runs through the spine. This spiral spinal movement is observable in the locomotion of all vertebrates. It is favoured in man by the antero-posterior curves (cervical, dorsal, and lumbar) existing in the human vertebral column. In the effort of walking the trunk and limbs oscillate on the ilio-femoral 1 "In quick walking and running the swinging leg never passes beyond the vertical which cuts the head of the femur."

In

articulations (hip-joints). The trunk also rotates in a forward direction on the foot which is placed upon the ground for the time being. The rotation begins at the heel and terminates at the toes. So long as the rotation continues, the body rises. When the rotation ceases and one foot is placed flat upon the ground, the body falls. The elevation and rotation of the body in a forward direction enables the foot which is off the ground for the time being to swing forward pendulum fashion; the swinging foot, when it can oscillate no further in a forward direction, reversing its course and retrograding to a slight extent, at which juncture it is deposited on the ground, as explained. The retrogression of the swinging foot is accompanied by a slight retrogression on the part of the body, which tends at this particular instant to regain a vertical position. From this it follows that in slow walking the trunk and the swinging foot advance together through a considerable space, and retire through a smaller space; that when the body is swinging it rotates upon the ilio-femoral articulations (hip-joints) as an axis; and that when the leg is not swinging, but fixed by its foot upon the ground, the trunk rotates upon the foot as an axis. These movements are correlated and complementary in their nature, and are calculated to relieve the muscles of the legs and trunk engaged in locomotion from excessive wear and tear.

Similar movements occur in the arms, which, as has been explained, are articulated to the shoulders by ball-and-socket joints (fig. 26, xx', p. 55). The right leg and left arm advance together to make one step, and so of the left leg and right arm. When the right leg advances the right arm retires, and vice versa. When the left leg advances the left arm retires, and the converse. There is therefore a complementary swinging of the limbs on each side of the body, the leg swinging always in an opposite direction to the arm on the same side. There is, moreover, a diagonal set of movements, also complementary in character: the right leg and left arm advancing together to form one step; the left leg and right arm advancing together to form the next. The diagonal movements beget a lateral twisting of the trunk and limbs; the oscillation of the trunk upon the limbs or feet, and the oscillation

of the feet and limbs upon the trunk, generate a forward wave movement, accompanied by a certain amount of vertical undulation. The diagonal movements of the trunk and extremities are accompanied by a certain degree of lateral curvature; the right leg and left arm, when they advance to make a step, each describing a curve, the convexity of which is directed to the right and left respectively. Similar curves

are described by the left leg and right arm in making the second or complementary step. When the curves formed by the right and left legs or the right and left arms are joined, they form waved tracks symmetrically arranged on either side of a given line. The curves formed by the legs and

[merged small][merged small][merged small][merged small][subsumed][ocr errors][ocr errors][subsumed][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small]

FIG. 27 shows the simultaneous positions of both legs during a step, divided into four groups. The first group (4), 4 to 7, gives the different positions which the legs simultaneously assume while both are on the ground; the second group (B), 8 to 11, shows the various positions of both legs at the time when the posterior leg is elevated from the ground, but behind the supported one; the third group (C), 12 to 14, shows the positions which the legs assume when the swinging leg overtakes the standing one; and the fourth group (D), 1 to 3, the positions during the time when the swinging leg is propelled in advance of the resting one. The letters a, b, and c indicate the angles formed by the bones of the right leg when engaged in making a step. The letters m, n, and o, the positions assumed by the right foot when the trunk is rolling over it. g Shows the rotating forward of the trunk upon the left foot () as an axis. h Shows the rotating forward of the left leg and foot upon the trunk (a) as an axis. Compare with fig. 4, p. 21; with fig. 24, p. 47; and with fig. 26, p. 55.-After Weber.

arms intersect at every step, as shown at fig. 19, p. 39. Similar curves are formed by the quadruped when walking

(fig. 18, p. 37), the fish when swimming (fig. 32, p. 68), and the bird when flying (figs. 73 and 81, pp. 144 and 157).

The alternate rotation of the trunk upon the limb and the limb upon the trunk is well seen in fig. 27, p. 59.

At 4 of fig. 27 the trunk (g) is observed rotating on the left foot (f). At D of fig. the left leg (h) is seen rotating on the trunk (a, i): these, as explained, are complementary movements. At A of fig. the right foot (c) is firmly placed on the ground, the left foot (f) being in the act of leaving it. The right side of the trunk is on a lower level than the left, which is being elevated, and in the act of rolling over the foot. At B of fig. the right foot (m) is still upon the ground, but the left foot having left it is in the act of swinging forward. At C of fig. the heel of the right foot (n) is raised from the ground, and the left foot is in the act of passing the right. The right side of the trunk is now being elevated. At D of fig. the heel of the right foot (0) is elevated as far as it can be, the toes of the left foot being depressed and ready to touch the ground. The right side of the trunk has now reached its highest level, and is in the act of rolling over the right foot. The left side of the trunk, on the contrary, is subsiding, and the left leg is swinging before the right one, preparatory to being deposited on the ground.

From the foregoing it will be evident that the trunk and limbs have pendulum movements which are natural and peculiar to them, the extent of which depends upon the length of the parts. A tall man and a short man can consequently never walk in step if both walk naturally and according to inclination.1

In traversing a given distance in a given time, a tall man

1 "The number of steps which a person can take in a given time in walking depends, first, on the length of the leg, which, governed by the laws of the pendulum, swings from behind forwards; secondly, on the earlier or later interruption which the leg experiences in its arc of oscillation by being placed on the ground. The weight of the swinging leg and the velocity of the trunk serve to give the impulse by which the foot attains a position vertical to the head of the thigh-bone; but as the latter, according to the laws of the pendulum, requires in the quickest walking a given time to attain that position, or half its entire curve of oscillation, it follows that every person has a certain measure for his steps, and a certain number of steps in a given time, which, in his natural gait in walking, he cannot exceed."

will take fewer steps than a short man, in the same way that a large wheel will make fewer revolutions in travelling over a given space than a smaller one. The relation is a purely mechanical one. The nave of the large wheel corresponds to the ilio-femoral articulation (hip-joint) of the tall man, the spokes to his legs, and portions of the rim to his feet. The nave, spokes, and rim of the small wheel have the same relation to the ilio-femoral articulation (hip-joint), legs and feet of the small man. When a tall and short man walk together, if they keep step, and traverse the same distance in the same time, either the tall man must shorten and slow his steps, or the short man must lengthen and quicken his.

The slouching walk of the shepherd is more natural than that of the trained soldier. It can be kept up longer, and admits of greater speed. In the natural walk, as seen in rustics, the complementary movements are all evoked. In the artificial walk of the trained army man, the complementary movements are to a great extent suppressed. Art is consequently not an improvement on nature in the matter of walking. In walking, the centre of gravity is being constantly changed, a circumstance due to the different attitudes assumed by the different portions of the trunk and limbs at different periods of time. All parts of the trunk and limbs of a biped, and the same may be said of a quadruped, move when a change of locality is effected. The trunk of the biped and quadruped when walking are therefore in a similar condition to that of the body of the fish when swimming.

In running, all the movements described are exaggerated. Thus the steps are more rapid and the strides greater. In walking, a well-proportioned six-feet man can nearly cover his own height in two steps. In running, he can cover without difficulty a third more.

In fig. 28 (p. 62), an athlete is represented as bending forward prior to running.

The left leg and trunk, it will be observed, are advanced beyond the vertical line (x), and the arms are tucked up like the rudimentary wings of the ostrich, to correct undue oscillation at the shoulders, occasioned by the violent oscillation produced at the pelvis in the act of running.

« НазадПродовжити »