Зображення сторінки
PDF
ePub

diagonally. The same leg moves rather oftener during the same period in trotting than in walking, or as six to five. The velocity acquired by moving the legs in pairs, instead of consecutively, depends on the circumstance that in the trot each leg rests on the ground during a short interval, and swings during a long one; whilst in walking each leg swings a short, and rests a long period. The undulations arising from the projection of the trunk in the trot are chiefly in the vertical plane; in the walk they are more in the horizontal.

The gallop has been erroneously believed to consist of a series of bounds or leaps, the two hind legs being on the ground when the two fore legs are in the air, and vice versâ, there being a period when all four are in the air. Thus Sainbell in his "Essay on the Proportions of Eclipse," states "that the gallop consists of a repetition of bounds, or leaps, more or less high, and more or less extended in proportion to the strength and lightness of the animal." A little reflection will show that this definition of the gallop cannot be the correct one. When a horse takes a ditch or fence, he gathers himself together, and by a vigorous effort (particularly of the hind legs), throws himself into the air. This movement requires immense exertion and is short-lived. It is not in the power of any horse to repeat these bounds for more than a few minutes, from which it follows that the gallop, which may be continued for considerable periods, must differ very materially from the leap.

The pace known as the amble is an artificial movement, produced by the cunning of the trainer. It resembles that of the giraffe, where the right fore and right hind foot move together to form one step; the left fore and left hind foot moving together to form the second step. By the rapid repetition of these movements the right and left sides of the body are advanced alternately by a lateral swinging motion, very comfortable for the rider, but anything but graceful. The amble is a defective pace, inasmuch as it interferes with the diagonal movements of the limbs, and impairs the continuity of motion which the twisting, cross movement begets. Similar remarks might be made of the gallop if it consisted (which it does not) of a series of bounds or leaps, as each

bound would be succeeded by a halt, or dead point, that could not fail seriously to compromise continuous forward motion. In the gallop, as in the slower movements, the horse has never less than two feet on the ground at any instant of time, no two of the four feet being in exactly the same position.

Mr. Gamgee, who has studied the movements of the horse very carefully, has given diagrams of the walk, trot, and gallop, drawn to a scale of the feet of a two-year-old colt in training, which had been walked, trotted, and galloped over the ground for the purpose. The point he sought to determine was the exact distance through which each foot was carried from the place where it was lifted to that where it alighted. The diagrams are reproduced at figures 21, 22, and 23. In figure 23 I have added a continuous waved line to indicate the alternating movements of the extremities; Mr. Gamgee at the time he wrote1 being, he informs me, unacquainted with the figure-of-8 theory of animal progression as subsequently developed by me. Compare fig. 23 with figs. 18 and 19, pp. 37 and 39; with fig. 50, p. 97; and with figs. 71 and 73, p. 144.

[merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small]

In examining figures 21, 22, and 23, the reader will do well to remember that the near fore and hind feet of a horse are the left fore and hind feet; the off fore and hind feet being the right fore and hind feet. The terms near and off

1 "On the Breeding of Hunters and Roadsters." Prize Essay.—Journal of Royal Agricultural Society for 1863.

are technical expressions, and apply to the left and right sides of the animal. Another point to be attended to in examining the figures in question, is the relation which exists between the fore and hind feet of the near and off sides of the body. In slow walking the near hind foot is planted behind the imprint made by the near fore foot. In rapid walking, on the contrary, the near hind foot is planted from six to twelve or more inches in advance of the imprint made by the near fore foot (fig. 21 represents the distance as eleven inches). In the trot the near hind foot is planted from twelve to eighteen or more inches in advance of the imprint made by the near fore foot (fig. 22 represents the distance as nineteen inches). In the gallop the near hind foot is planted 100 or more inches in advance of the imprint made by the near fore foot (fig. 23 represents the distance as 1103 inches). The distance by which the near hind foot passes the near fore foot in rapid walking, trotting, and galloping, increases in a progressive ratio, and is due in a principal measure to the velocity or momentum acquired by the mass of the horse in rapid motion; the body of the animal carrying forward and planting the limbs at greater relative distances in the trot than in the rapid walk, and in the gallop than in the trot. I have chosen to speak of the near hind and near fore feet, but similar remarks may of course be made of the off hind and off fore feet.

"At fig. 23, which represents the gallop, the distance between two successive impressions produced, say by the near fore foot, is eighteen feet one inch and a half. Midway between these two impressions is the mark of the near hind foot, which therefore subdivides the space into nine feet and six-eighths of an inch, but each of these is again subdivided into two halves by the impressions produced by the off fore and off hind feet. It is thus seen that the horse's body instead of being propelled through the air by bounds or leaps even when going at the highest attainable speed, acts on a system of levers, the mean distance between the points of resistance of which is four feet six inches. The exact length of stride, of course, only applies to that of the particular horse observed, and the rate of speed at which he is going. In the

case of any one animal, the greater the speed the longer is the individual stride. In progression, the body moves before a limb is raised from the ground, as is most readily seen when the horse is beginning its slowest action, as in traction."1

At fig. 22, which represents the trot, the stride is ten feet one inch. At fig. 21, which represents the walk, it is only five feet five inches. The speed acquired, Mr. Gamgee points out, determines the length of stride; the length of stride being the effect and evidence of speed and not the cause of it. The momentum acquired in the gallop, as already explained, greatly accelerates speed.

"In contemplating length of strides, with reference to the fulcra, allowance has to be made for the length of the feet, which is to be deducted from that of the strides, because the apex, or toe of the horse's hind foot forms the fulcrum in one instant, and the heel of the fore foot in the next, and vice versa. This phenomenon is very obvious in the action of the human foot, and is remarkable also for the range of leverage thus afforded in some of the fleetest quadrupeds, of different species. In the hare, for instance, between the point of its hock and the termination of its extended digits, there is a space of upwards of six inches of extent of leverage and variation of fulcrum, and in the fore limb from the carpus to the toe-nails (whose function in progression is not to be underrated) upwards of three inches of leverage are found, being about ten inches for each lateral biped, and the double of that for the action of all four feet. Viewed in this way the stride is not really so long as would be supposed if merely estimated from the space between the footprints.

Many interesting remarks might be made on the length of the stride of various animals; the full movement of the greyhound is, for instance, upwards of sixteen feet; that of the hare at least equal; whilst that of the Newfoundland dog is a little over nine feet." 1

Locomotion of the Ostrich.-Birds have been divided by naturalists into eight orders :-the Natatores, or Swimming Birds; the Grallatores, or Wading Birds; the Cursores, or Running Birds; the Scansores, or Climbers; the Rasores, or

1 Gamgee in Journal of Anatomy and Physiology, vol. iii. pp. 375, 376

Scrapers; the Columbæ, or Doves; the Passeres; and the Raptores, or Birds of Prey.

The first five orders have been classified according to their habits and modes of progression. The Natatores I shall consider when I come to speak of swimming as a form of locomotion, and as there is nothing in the movements of the wading, scraping, and climbing birds, or in the Passeres 2 or Raptores, requiring special notice, I shall proceed at once to a consideration of the Cursores, the best examples of which are the ostrich, emu, cassowary, and apteryx.

1

The ostrich is remarkable for the great length and development of its legs as compared with its wings (fig. 24). In this respect it is among birds what the kangaroo is among mammals. The ostrich attains an altitude of from six to eight feet, and is the largest living bird known. Its great height is due to its attenuated neck and legs. The latter are very powerful structures, and greatly resemble in their general conformation the posterior extremities of a thoroughbred horse or one of the larger deer-compare with fig. 4, p. 21. They are expressly made for speed. Thus the bones of the leg and foot are inclined very obliquely towards each other, the femur being inclined very obliquely to the ilium. As a consequence the angles made by the several bones of the legs are comparatively small; smaller in fact than in either the horse or deer.

The feet of the ostrich, like those of the horse and deer, are reduced to a minimum as regards size; so that they occasion very little friction in the act of walking and running. The foot is composed of two jointed toes,3 which spread out when the weight of the body comes upon them, in such a manner as enables the bird to seize and let go the ground with equal facility. The advantage of such an arrangement in rapid locomotion cannot be over-estimated. The elasticity and flexibility of the foot contribute greatly to the rapidity

1 The woodpeckers climb by the aid of the stiff feathers of their tails; the legs and tail forming a firm basis of support.

2 In this order there are certain birds-the sparrows and thrushes, for example-which advance by a series of vigorous leaps; the leaps being of an intermitting character.

3 The toes in the emu amount to three.

« НазадПродовжити »