Wavelet Methods for Time Series Analysis

Передня обкладинка
Cambridge University Press, 24 лип. 2000 р. - 594 стор.
The analysis of time series data is essential to many areas of science, engineering, finance and economics. This introduction to wavelet analysis "from the ground level and up," and to wavelet-based statistical analysis of time series focuses on practical discrete time techniques, with detailed descriptions of the theory and algorithms needed to understand and implement the discrete wavelet transforms. Numerous examples illustrate the techniques on actual time series. The many embedded exercises--with complete solutions provided in the Appendix--allow readers to use the book for self-guided study. Additional exercises can be used in a classroom setting. A Web site offers access to the time series and wavelets used in the book, as well as information on accessing software in S-Plus and other languages. Students and researchers wishing to use wavelet methods to analyze time series will find this book essential. Author resource page: http://faculty.washington.edu/dbp/wmtsa.html
 

Зміст

Introduction to Wavelets
1
Review of Fourier Theory and Filters
20
Orthonormal Transforms of Time Series
41
The Discrete Wavelet Transform
56
The Maximal Overlap Discrete Wavelet Transform
159
The Discrete Wavelet Packet Transform
206
Random Variables and Stochastic Processes
255
The Wavelet Variance
295
Analysis and Synthesis of Long Memory Processes
340
WaveletBased Signal Estimation
393
Wavelet Analysis of Finite Energy Signals
457
Appendix Answers to Embedded Exercises
501
References
552
Author Index
565
Авторські права

Інші видання - Показати все

Загальні терміни та фрази

Посилання на книгу

Nonlinear and Nonstationary Signal Processing
W. J. Fitzgerald
Обмежений попередній перегляд - 2000
Statistics in Musicology
Jan Beran
Попередній перегляд недоступний - 2003
Усі результати пошуку книг »

Бібліографічна інформація