Зображення сторінки
PDF
ePub

to the electricity which they develop when rubbed together, each substance being positively electrified when rubbed with any substance beneath it in the list.

[blocks in formation]

Thus, if resin be rubbed with cat's skin, or with flannel, the cat's skin or flannel will be positively, and the resin negatively, electrified; while if glass be rubbed with silk, the glass will be positively, and the silk negatively, electrified, and so on.

86. It is not our purpose here to describe at length the electrical machine, but we may state that it consists of two parts, one for generating electricity by means of the friction of a rubber against glass, and another consisting of a system of brass tubes, of considerable surface, supported on glass stems, for collecting and retaining the electricity so produced. This latter part of the machine is called its prime conductor.

Electric Induction.

87. Let us now suppose that we have set in action a machine of this kind, and accumulated a considerable

F

quantity of positive electricity in its prime conductor at A. Let us next take two vessels, B and C, made of brass

[blocks in formation]

supported on glass stems. These two vessels are supposed to be in contact, but at the same time to be capable of being separated from one another at their middle point, where the line is drawn in Fig. 6. Now let us cause B and C to approach A together. At first, B and C are not electrified, that is to say, their two electricities are not separated from each other, but are mixed together; but mark what will happen as they are pushed towards A. The positive electricity of a will decompose the two electricities of B and C, attracting the negative towards itself, and repelling the positive as far away as possible. The disposition of electricities will, therefore, be as in the figure. If we now pull c away from B, we have obtained a quantity of positive electricity on c, by help of the original electricity which was in A; in fact, we have made use of the original stock or electrical capital in A, in order to obtain positive elec

tricity in c, without, however, diminishing the amount of our original stock. Now, this distant action or help, rendered by the original electricity in separating that of B and C, is called electric induction.

88. The experiment may, however, be performed in a somewhat different manner-we may allow B and C to remain together, and gradually push them nearer to A. As B and C approach A, the separation of their electricities will become greater and greater, until, when A and B are only divided by a small thickness of air, the two opposite electricities then accumulated will have sufficient strength to rush together through the air, and unite with each other by means of a spark.

89. The principle of induction may be used with advantage, when it is wished to accumulate a large quantity of electricity.

In this case, an instrument called a Leyden jar is very frequently employed. It consists of a glass jar, coated inside and outside with tin foil, as in Fig. 7. A brass rod, having a knob at the end of it, is connected metallically with the inside coating, and is kept in its place by being passed through a cork, which covers the mouth of the jar. We have thus two metallic coatings which are not electrically connected with one another. a jar of this kind, let the

[graphic]

Fig. 7. Now, in order to charge outside coating be con

nected by a chain with the earth, while at the same time positive electricity from the prime conductor of an electrical machine is communicated to the inside knob.

The positive electricity will accumulate on the inside coating with which the knob is connected. It will then decompose the two electricities of the outside coating, driving the positive electricity to the earth, and there dissipating it, but attracting the negative to itself. There will thus be positive electricity on the inside, and negative on the outside coating. These two electricities may be compared to two hostile armies watching each other, and very anxious to get together, while, however, they are separated from one another by means of an insurmountable obstacle. They will thus remain facing each other, and at their posts, while each side is, meanwhile, being recruited by the same operation as before. We may by this means accumulate a vast quantity of opposite electricities on the two coatings of such a jar, and they will remain there for a long time, especially if the surrounding atmosphere and the glass surface of the jar be quite dry. When, however, electric connection of any kind is made between the two coatings, the electricities rush together and unite with one another in the shape of a spark, while if the human body be the instrument of connecting them a severe shock will be felt.

90. It would thus appear that, when two bodies charged with opposite electricities are brought near each other, the two electricities rush together, forming

a current, and the ultimate result is a spark. Now, this spark implies heat, and is, in truth, nothing else than small particles of intensely heated matter of some kind. We have here, therefore, first of all, the conversion of electrical separation into a current of electricity, and, secondly, the conversion of this current into heat. In this case, however, the current lasts only a very small time; the discharge, as it is called, of a Leyden jar being probably accomplished in th of a second.

1

24000

The Electric Current.

91. In other cases we have electrical currents which, although not so powerful as that produced by discharging a Leyden jar, yet last longer, and are, in fact, continuous instead of momentary.

We may see a similar difference in the case of visible energy. Thus we might, by means of gunpowder, send up in a moment an enormous mass of water; or we might, by means of a fountain, send up the same mass in the course of time, and in a very much quieter manner. We have the same sort of difference in electrical discharges, and having spoken of the rushing together of two opposite electricities by means of an explosion and a spark, let us now speak of the eminently quiet and effective voltaic current, in which we have a continuous coming together of the same two agents.

92. It is not our object here to give a complete description, either historical or scientific, of the voltaic

« НазадПродовжити »