Зображення сторінки
PDF
ePub

Remarks on Molecular and Atomic Forces.

72. Now, it is important to remember that we must treat cohesion and chemical affinity exactly in the same way as gravity has been treated; and just as we have energy of position with respect to gravity, so may we have as truly a species of energy of position with respect to cohesion and chemical affinity. Let us begin with cohesion.

73. We have hitherto regarded heat as a peculiar motion of the molecules of matter, without any reference to the force which actuates these molecules. But it is a well-known fact that bodies in general expand when heated, so that, in virtue of this expansion, the molecules of a body are driven violently apart against the force of cohesion. Work has in truth been done against this force, just as truly as, when a kilogramme is raised from the earth, work is done against the force of gravity. When a substance is heated, we may, therefore, suppose that the heat has a twofold office to perform, part of it going to increase the actual 'motions of the molecules, and part of it to separate these molecules from one another against the force of cohesion. Thus, if I swing round horizontally a weight (attached to my hand by an elastic thread of india-rubber), my energy will be spent in two ways-first of all, it will be spent in communicating a velocity to the weight; and, secondly, in stretching the india-rubber string, by means of the

centrifugal tendency of the weight. Work will be done against the elastic force of the string, as well as spent in increasing the motion of the weight.

Now, something of this kind may be taking place when a body is heated, for we may very well suppose heat to consist of a vertical or circular motion, the tendency of which would be to drive the particles asunder against the force of cohesion. Part, therefore, of the energy of heat will be spent in augmenting the motion, and part in driving asunder the particles. We may, however, suppose that, in ordinary cases, the great proportion of the energy of heat goes towards increasing the molecular motion, rather than in doing work against the force of cohesion.

74. In certain cases, however, it is probable that the greater part of the heat applied is spent in doing work against molecular forces, instead of increasing the motions of molecules.

Thus, when a solid melts, or when a liquid is rendered gaseous, a considerable amount of heat is spent in the process, which does not become sensible, that is to say, does not affect the thermometer. Thus, in order to melt

a kilogramme of ice, heat is required sufficient to raise a kilogramme of water through 80° C., and yet, when melted, the water is no warmer than the ice. We express this fact by saying that the latent heat of water is 80. Again, if a kilogramme of water at 100° be converted entirely into steam, as much heat is required as

would raise the water through 537° C., or 537 kilogrammes of water through one degree; but yet the steam is no hotter than the water, and we express this fact by saying that the latent heat of steam is 537. Now, in both of these instances it is at least extremely probable that a large portion of the heat is spent in doing work against the force of cohesion; and, more especially, when a fluid is converted into a gas, we know that the molecules are in that process separated so far from one another as to lose entirely any trace of mutual force. We may, therefore, conclude that although in most cases the greater portion of the heat applied to a body is spent in increasing its molecular motion, and only a small part in doing work against cohesion, yet when a solid melts, or a liquid vaporizes, a large portion of the heat required is not improbably spent in doing work against molecular forces. But the energy, though spent, is not lost, for when the liquid again freezes, or when the vapour again condenses, this energy is once more transformed into the shape of sensible heat, just as when a stone is dropped from the top of a house, its energy of position is transformed once more into actual energy.

75. A single instance will suffice to give our readers a notion of the strength of molecular forces. If a bar of wrought iron, whose temperature is 10° C. above that of the surrounding medium, be tightly secured at its extremities, it will draw these together with a force of at least one ton for each square inch of section. In some

cases where a building has shown signs of bulging outwards, iron bars have been placed across it, and secured while in a heated state to the walls. On cooling, the iron contracted with great force, and the walls were

thereby pulled together.

76. We are next brought to consider atomic forces, or those which lead to chemical union, and now let us see how these are influenced by heat. We have seen that heat causes a separation between the molecules of a body, that is to say, it increases the distance between two contiguous molecules, but we must not suppose that, meanwhile, the molecules themselves are left unaltered.

The tendency of heat to cause separation is not confined to increasing the distance between molecules, but acts also, no doubt, in increasing the distance between parts of the same molecule: in fact, the energy of heat is spent in pulling the constituent atoms asunder against the force of chemical affinity, as well as in pulling the molecules asunder against the force of cohesion, so that, at a very high temperature, it is probable that most chemical compounds would be decomposed, and many are so, even at a very moderate heat.

Thus the attraction between oxygen and silver is so slight that at a comparatively low temperature the oxide of silver is decomposed. In like manner, limestone, or carbonate of lime, is decomposed when subjected to the heat of a lime-kiln, carbonic acid being given off, while quick-lime remains behind. Now, in separating hetero

geneous atoms against the powerful force of chemical affinity, work is done as truly as it is in separating molecules from one another against the force of cohesion, or in separating a stone from the earth against the force of gravity.

77. Heat, as we have seen, is very frequently influential in performing this separation, and its energy is spent in so doing; but other energetic agents produce chemical decomposition as well as heat. For instance, certain rays of the sun decompose carbonic acid into carbon and oxygen in the leaves of plants, and their energy is spent in the process; that is to say, it is spent in pulling asunder two such powerfully attracting substances against the affinity they have for one another. And, again, the electric current is able to decompose certain substances, and of course its energy is spent in the process.

Therefore, whenever two powerfully attracting atoms are separated, energy is spent in causing this separation as truly as in separating a stone from the earth, and when once the separation has been accomplished we have a species of energy of position just as truly as we have in a head of water, or in a stone at the top of a house.

78. It is this chemical separation that is meant when we speak of coal as a source of energy. Coal, or carbon, has a great attraction for oxygen, and whenever heat is applied the two bodies unite together. Now oxygen, as it exists in the atmosphere, is the common inheritance of all, and if, in addition to this, some of us possess coal in our cellars, or in pits, we have thus secured a store of

« НазадПродовжити »