Зображення сторінки
PDF
ePub

state of excitement; those fronting the engine are driven with force against their opposite neighbours, and are, no doubt, as forcibly repelled, each one taking care of himself in the general scramble. Now, we have only to substitute particles for persons, in order to obtain an idea of what takes place when percussion is converted into heat. We have, or suppose we have, in this act the same violent collision of atoms, the same thrusting forward of A upon B, and the same violence in pushing back on the part of B-the same struggle, confusion, and excitement-the only difference being that particles are heated instead of human beings, or their tempers.

54. We are bound to acknowledge that the proof which we have now given is not a direct one; indeed, we have, in our first chapter, explained the impossibility of our ever seeing these individual particles, or watching their movements; and hence our proof of the assertion that heat consists in such movements cannot possibly be direct. We cannot see that it does so consist, but yet we may feel sure, as reasonable beings, that we are right in our conjecture.

In the argument now given, we have only two alternatives to start with-either heat must consist of a motion of particles, or, when percussion or friction is converted into heat, a peculiar substance called caloric must be created, for if heat be not a species of motion it must necessarily be a species of matter. Now, we have preferred to consider heat as a species of motion to the alter

native of supposing the creation of a peculiar kind of matter.

55. Nevertheless, it is desirable to have something to say to an opponent who, rather than acknowledge heat to be a species of motion, will allow the creation of matter. To such an one we would say that innumerable experiments render it certain that a hot body is not sensibly heavier than a cold one, so that if heat be a species of matter it is one that is not subject to the law of gravity. If we burn iron wire in oxygen gas, we are entitled to say that the iron combines with the oxygen, because we know that the product is heavier than the original iron by the very amount which the gas has lost in weight. But there is no such proof that during combustion the iron has combined with a substance called caloric, and the absence of any such proof is enough to entitle us to consider heat to be a species of motion, rather than a species of matter.

Heat a Backward and Forward Motion.

56. We shall now suppose that our readers have assented to our proposition that heat is a species of motion. It is almost unnecessary to add that it must be a species of backward and forward motion; for nothing is more clear than that a heated substance is not in motion as a whole, and will not, if put upon a table, push its way from the one end to the other.

Mathematicians express this peculiarity by saying that,

although there is violent internal motion among the particles, yet the centre of gravity of the substance remains at rest; and since, for most purposes, we may suppose a body to act as if concentrated at its centre of gravity, we may say that the body is at rest.

57. Let us here, before proceeding further, borrow an illustration from that branch of physics which treats of sound. Suppose, for instance, that a man is accurately balanced in a scale-pan, and that some water enters his ear; of course he will become heavier in consequence, and if the balance be sufficiently delicate, it will exhibit the difference. But suppose a sound or a noise enters his ear, he may say with truth that something has entered, but yet that something is not matter, nor will he become. one whit heavier in consequence of its entrance, and he will remain balanced as before. Now, a man into whose

ear sound has entered may be compared to a substance into which heat has entered; we may therefore suppose a heated body to be similar in many respects to a sounding body, and just as the particles of a sounding body move backwards and forwards, so we may suppose that the particles of a heated body do the same.

We shall take another opportunity (Art. 162) to enlarge upon this likeness; but, meanwhile, we shall suppose that our readers perceive the analogy.

Mechanical Equivalent of Heat.

58. We have thus come to the conclusion that when any heavy body, say a kilogramme weight, strikes the ground, the visible energy of the kilogramme is changed into heat; and now, having established the fact of a relationship between these two forms of energy, our next point is to ascertain according to what law the heating effect depends upon the height of fall. Let us, for instance, suppose that a kilogramme of water is allowed to drop from the height of 848 metres, and that we have the means of confining to its own particles and retaining there the heating effect produced. Now, we may suppose that its descent is accomplished in two stages; that, first of all, it falls upon a platform from the height of 424 metres, and gets heated in consequence, and that then the heated mass is allowed to fall other 424 metres. It is clear that the water will now be doubly heated; or, in other words, the heating effect in such a case will be proportional to the height through which the body falls—that is to say, it will be proportional to the actual energy which the body possesses before the blow has changed this into heat. In fact, just as the actual energy represented by a fall from a height is proportional to the height, so is the heating effect, or molecular energy, into which the actual energy is changed proportional to the height also. Having established this point, we now wish to know through

how many metres a kilogramme of water must fall in order to be heated one degree centigrade.

59. For a precise determination of this important point, we are indebted to Dr. Joule, of Manchester, who has, perhaps, done more than any one else to put the science of energy upon a sure foundation. Dr. Joule made numerous experiments, with the view of arriving at the exact relation between mechanical energy and heat; that is to say, of determining the mechanical equivalent of heat. In some of the most important of these he took advantage of the friction of fluids.

60. These experiments were conducted in the following manner. A certain fixed weight was attached to a pulley, as in the figure. The weight had, of course, a tendency

PADDLE

WEIGHT

Fig. 4.

to descend, and hence to turn the pulley round. The pulley had its axle supported upon friction wheels, at f and f, by means of which the friction caused by the

« НазадПродовжити »