Зображення сторінки
PDF
ePub

bonate of lime be heated, it is decomposed, the carbonie acid being given out in the shape of gas, while quicklime remains behind. Now, heat is consumed in this process, that is to say, a certain amount of heat energy absolutely passes out of existence as heat and is changed into the energy of chemical separation. Again, if the lime so obtained be exposed, under certain circumstances, to an atmosphere of carbonic acid, it will gradually become changed into carbonate of lime; and in this change (which is a gradual one) we may feel assured that the energy of chemical separation is once more converted into the energy of heat, although we may not perceive any increment of temperature, on account of the slow nature of the process.

At very high temperatures it is possible that most compounds are decomposed, and the temperature at which this takes place, for any compound, has been termed its temperature of disassociation.

160. Heat energy is changed into electrical separation when tourmalines and certain other crystals are heated. Let us take, for instance, a crystal of tourmaline and raise its temperature, and we shall find one end positively, and the other negatively, electrified. Again, let us take the same crystal, and suddenly cool it, and we shall find an electrification of the opposite kind to the former, so that the end of the axis, which was then positive, will now be negative. Now, this separation of the electricities denotes energy; and we have, therefore, in such crystals

a case where the energy of heat has been changed into that of electrical separation. In other words, a certain amount of heat has passed out of existence as heat, while in its place a certain amount of electrical separation has been obtained.

161. Let us next see under what circumstances heat is changed into electricity in motion. This transmutation takes place in thermo-electricity.

n

S C

Suppose, for instance, that we have a bar of copper or antimony, say copper, soldered to a bar of bismuth, as in Fig. 12. Let us now heat one of the junctions, while the other remains cool. It will be found that a current of positive electricity circulates round the bar, in the direction of the arrow-head, going from the bismuth to the copper across the heated junction, the existence of which may be detected by means of a compass needle, as we see in the figure.

Fig. 12.

Here, then, we have a case in which heat energy goes out of existence, and is converted into that of an electric current, and we may even arrange matters so as to make, on this principle, an instrument which shall be an extremely delicate test of the existence of heat.

By having a number of junctions of bismuth and

A

በቡ

antimony, as in Fig. 13, and heating the upper set, while the lower remain cool, we get a strong current going from the bismuth to the antimony across the B heated junctions, and we may pass the current so produced round the wire of a galvanometer, and thus, by increasing the number of our junctions, and also by using a very delicate galvanometer, we may get a very perceptible effect for the Fig. 13. smallest heating of the upper junctions. This arrangement is called the thermopile, and, in conjunction with the reflecting galvanometer, it affords the most delicate means known for detecting small quantities of heat.

G

162. The last transmutation on our list with respect to absorbed heat is that in which this species of energy is transformed into radiant light and heat. This takes place whenever a hot body cools in an open space-the sun, for instance, parts with a large quantity of his heat in this way; and it is due, in part at least, to this process that a hot body cools in air, and wholly to it that such a body cools in vacuo. It is, moreover, due to the pene tration of our eye by radiant energy that we are able to see hot bodies, and thus the very fact that we see them implies that they are parting with their heat.

Radiant energy moves through space with the enormous velocity of 188,000 miles in one second. It takes about

eight minutes to come from the sun to our earth, so that if our luminary were to be suddenly extinguished, we should have eight minutes, respite before the catastrophe overtook us. Besides the rays that affect the eye, there are others which we cannot see, and which may therefore be termed dark rays. A body, for instance, may not be hot enough to be self-luminous, and yet it may be rapidly cooling and changing its heat into radiant energy, which is given off by the body, even although neither the eye nor the touch may be competent to detect it. It may nevertheless be detected by the thermopile, which was described in Art. 161. We thus see how strong is the likeness between a heated body and a sounding one. For just as a sounding body gives out part of its sound energy to the atmosphere around it, so does a heated body give out part of its heat energy to the ethereal medium around it. When, however, we consider the rates of motion of these energies through their respective media, there is a mighty difference between the two, sound travelling through the air with the velocity of 1100 feet a second, while radiant energy moves over no less a space than 188,000 miles in the same portion of time.

Chemical Separation.

163. We now come to the energy denoted by chemical separation, such as we possess when we have coal or carbon in one place, and oxygen in another. Very evi

dently this form of energy of position is transmuted into heat when we burn the coal, or cause it to combine with the oxygen of the air; and generally, whenever chemical combination takes place, we have the production of heat, even although other circumstances may interfere to prevent its recognition.

Now, in accordance with the principle of conservation, it may be expected that, if a definite quantity of carbon or of hydrogen be burned under given circumstances, there will be a definite production of heat; that is to say, a ton of coals or of coke, when burned, will give us so many heat units, and neither more or less. We may, no doubt, burn our ton in such a way as to economize more or less of the heat produced; but, as far as the mere production of heat is concerned, if the quantity and quality of the material burned and the circumstances of combustion be the same, we expect the same amount of heat.

164. The following table, derived from the researches of Andrews, and those of Favre and Silbermann, shows us how many units of heat we may get by burning a kilogramme of various substances.

UNITS of HEAT developed by COMBUSTION in OXYGEN.

[blocks in formation]
« НазадПродовжити »