Зображення сторінки
PDF
ePub

CHAPTER VII.

MAXIMA AND MINIMA.

SECT. 1. Explicit Functions of One Variable.

SUPPOSE that u is any explicit function of a: the following rule will enable us to determine those values of a which render u a maximum or minimum. 66

du

Equate to zero or

dx

infinity let a be a possible value of a obtained from either

:

du

of these equations; then, if changes sign from + to or

dx

from to when, h being an indefinitely small quantity, a − h and a +h, are substituted successively for x, x = a will correspond respectively to a maximum or minimum value of u if no such change of sign takes place the value a of a must be rejected. By applying this process to each of the

:

[blocks in formation]

of a essentially positive for all possible values of a: then,

du

instead of we may evidently take v = (x), and treat v

dx

[blocks in formation]

The following principle is also frequently useful for the determination of maxima and minima. "Suppose that, for

any particular value of x,

du dr

=0, and that

du d'u d3 u

3000

dx' da' da3 are none of them infinite: then, if the first of these differential coefficients which does not vanish, for the particular value of x, be of an even order, u will be a maximum or a minimum accordingly as this differential coefficient is

negative or positive." If

du

dx

=

†(x).v, y(x) being an es

sentially positive function of x, the following modification of this principle in many cases affords considerable simplification. Suppose that, for any particular value of x, v = 0, and that

[ocr errors]

dv

d2 v ď v

are none of them infinite: then, if the first

dx' dx2' dx3 of these differential coefficients which does not vanish, for the particular value of x, be of an odd order, u will be a maximum or a minimum accordingly as this derived function is negative or positive."

In testing by the sign of

dr u
dxn

,

the first differential co

efficient of u which does not vanish for a particular value a of a, whether the value of u be a maximum or a minimum, the following consideration will sometimes shorten the process.

[blocks in formation]

value of a, which causes one of the factors as w, and its first n 2 differential coefficients to vanish, the only term of

[ocr errors]
[merged small][merged small][merged small][merged small][merged small][ocr errors]

d" u

dx

all the others vanish when a is put equal to a, so that

is reduced to one term.

dx"

The investigation of the maximum and minimum values of u is sometimes facilitated by the following considerations.

If u be a maximum or minimum, and a be a positive constant, au is also a maximum or minimum.

When u is a maximum or minimum, au2 2n+1

a

but is inversely a minimum or maximum.

u2n+1

2n

is so also;

If u be a positive maximum or minimum, au2" is also a maximum or minimum. If u be a negative maximum or minimum, au2n will be a minimum or maximum. The same remarks apply to fractional powers of the function u, except that when the denominator of the fraction is even, and the value of u negative, the power of u is impossible.

When u is a positive maximum or minimum, logu is a maximum or minimum. This preparation of the function is frequently made when the function u consists of products or quotients of roots and powers, as the differentiation is thus facilitated.

Other transformations of u are sometimes useful, but as these depend on particular forms which but rarely occur, they may be left to the ingenuity of the student who desires to simplify the solution of the proposed problem.

[blocks in formation]

The roots of this equation are 1, 2, 3, and

[blocks in formation]
[merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small]

The roots o make u neither a maximum nor a minimum;

[blocks in formation]

x = a makes u = 0, which is a minimum when n is even,

du

because changes sign from to when a

dx

- h, a + h, are substituted successively for ; and neither a maximum

du

nor a minimum when n is odd, because is then insusceptible

of a change of sign.

dx

[blocks in formation]

du

dx

= xm−1 (a − x)"−1 {ma − (m + n) x} = 0;

the roots of which are x = 0, x = a, and x =

ma

m + n

x = 0 makes u = 0, a minimum if m be even, and neither

a maximum nor a minimum if m be odd.

x = a makes u = 0, a minimum if n be even, and neither

a maximum nor a minimum if n be odd.

[blocks in formation]

xTM-1 (a−x)" ~'} {ma− (m+n)x} − (m+n)xTM−' (a−x)"−1,

[merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small]

This is the solution of the problem.

To divide the number a into two parts, such that the product of the mth power of the one by the nth power of the other shall

[merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small]

Since (1+) is essentially positive we have, taking

[merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small]
[blocks in formation]

2

=

2,

u =

a maximum - 1,

;

[blocks in formation]

u = 3, a minimum.

« НазадПродовжити »