Зображення сторінки
PDF
ePub
[merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small]

This is the general equation to surfaces generated by the motion of a line which constantly rests on two given lines while it remains parallel to a fixed plane.

(22) Eliminate the arbitrary functions from
≈ = (ay + bx). (ay - bx).

Taking the logarithm we have

log x = log (ay + bx) + log ↓ (ay – bx),

and as the functions are arbitrary their logarithms are also arbitrary functions, and we may replace them by the general characteristics F and f. Therefore, differentiating with respect to x and y successively,

[blocks in formation]
[merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small]

Multiplying by a, b and subtracting, we obtain as the result of the elimination of the functions

[merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small]

(1)

xf (a) + yp (a) + ≈ √ (a) = 1,

where a is a function of a, y, and ≈ given by the equation

(2)

x f'(a) + y p' (a) + ≈ f' (a) = 0 ;

f', ', being the differential coefficients of f, p, Y. Differentiating (1) with respect to a,

{x ƒ' (a) + y p' (a) + ≈ \'(a)}

da

dz

+ f (a) + y (a)

=

da

dx

which by the condition (2) is reduced to

[blocks in formation]

0;

In the same way, differentiating with respect to y, we

[blocks in formation]

dz

dy

Since from these two equations it appears that and

dx

are both functions of a, the one may be supposed to

be a function of the other, and we may write

[merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small]

(24) Eliminate the arbitrary function from the equation

[merged small][merged small][ocr errors][ocr errors][merged small][merged small][ocr errors][ocr errors][ocr errors][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small]

Also

=

=

then

+

a dx

du

du dr

du dz

+

dx

dr dx

dz da

du

du dr du dz

dy

dr dy dx dy

[ocr errors]

a + c

(a

+

dx) p'(ax + cx) = a y' (ax – by),

cp' (ax + cz),

therefore,

1 du

and

[blocks in formation]
[blocks in formation]
[blocks in formation]
[blocks in formation]

0,

1 ds

b dy

(a + c d x ) p′ (ax + cx) = a y′ (ax – by),

[blocks in formation]

CHAPTER V.

APPLICATION OF THE DIFFERENTIAL CALCULUS TO THE
DEVELOPMENT OF FUNCTIONS.

SECT. 1. Taylor's Theorem.

This theorem, the most important in the Differential Calculus, and the foundation of the other theorems for the development of Functions, was first given by Brook Taylor in his Methodus Incrementorum, p. 23. He introduces it merely as a corollary to the corresponding theorem in Finite Differences, and makes no application of it, or remark on its importance. The following is the statement of the

theorem :

If u = f(x) and a receive an increment h, then

[blocks in formation]

If we avail ourselves of the method of the separation of the symbols of operation from those of quantity, this theorem may be expressed in a very convenient form, which is useful in various parts of the Integral Calculus: viz.

[blocks in formation]

It is frequently convenient to use Lagrange's notation, and to represent the successive differential coefficients of f(x) by accents affixed to the characteristic of the function. In this way Taylor's Theorem is written

[blocks in formation]

If we stop at any term, as the nth, which is f(n−1) (x)

ha-1

1.2... (n - 1)

the error committed by neglecting the re

maining terms lies between the greatest and least values which

f(n) (x + Oh)

1.2

h"

n ...

can receive; where is less than 1.

This is Lagrange's Theorem of the limits of Taylor's Theorem. See Lagrange, Calcul des Fonctions, p. 88. Also De Morgan's Differential Calculus, p. 70.

Ex. (1) Let f (x) = (a + x)".

(a+x+h)" = (a+x)"+n(a+x)”−1h +

1.2

(a + a)".

Then n (n-1)

(a+x)" -2h2+ &c.

[ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small]

If we stop at the nth term the error lies between the

hn

greatest and least values of a(*+0h) (log a)"

[merged small][ocr errors][merged small][merged small][merged small]

least value is found by making = 0, and the greatest by = 1, and therefore the error lies between

making

[merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small]

(3) Let f(x) = log w. Then since by Chap. 11. Sec. 1,

[blocks in formation]
« НазадПродовжити »