Зображення сторінки
PDF
ePub

CHAPTER IX.

ON THE TANGENTS, NORMALS AND ASYMPTOTES TO CURVES.

SECT. 1. Rectilinear Co-ordinates.

IF the equation to the curve be put under the form

y = f (x),

the equation to a tangent at a point ry is

[blocks in formation]

a' and y' being the current co-ordinates of the tangent. If the equation to the curve be put under the form u = p(x, y) = c,

the equation to the tangent takes the more symmetrical form

[blocks in formation]

If u be a homogeneous function of n dimensions in ≈ and y, by a well-known property of such functions

[merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small]

(y' − y) ·

dx

dy

(x' − x) ;

du

(x' - x)

= 0.

[merged small][merged small][merged small][merged small][merged small][ocr errors][ocr errors][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small]

if u be a homogeneous function of n dimensions in x and y.

The portion of the tangent intercepted between the point of contact and the perpendicular on it from the origin is

[merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][subsumed]

The portions of the axes cut off between the origin and the tangent, or the intercepts of the tangent, are

[blocks in formation]

These I shall call yo, o respectively.

Ex. (1). The equation to the hyperbola referred to its asymptotes is

[blocks in formation]

xy= m3.

[blocks in formation]

y (x' − x) + x (y' − y) = 0 ;
or yx' + xy' = 2xy = 2m2.

[merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small]

and the triangle contained between the axes and the tangent, being proportional to this product, is also constant.

(2) The equation to the parabola referred to two tangents

[merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small]

The intercepts are = (ax)1, y = (by);

Yo

[merged small][ocr errors][merged small][merged small][ocr errors][merged small][merged small]

or x, y are the co-ordinates of the chord joining the points at which the axes touch the curve.

(3)

The equation to one of the hypocycloids referred

to rectangular co-ordinates is

[blocks in formation]

=

Therefore a3 æ3, y = ay; and the portion of the tangent intercepted between the axes = (x2 + y2)1⁄2 · (x2 + y) = a; or the hypocycloid is constantly touched by a straight line of given

length which slides between two rectangular axes. The converse of this proposition, viz. that the locus of the ultimate intersections of a line of given length sliding between rectangular axes is this hypocycloid, was first shewn by John Bernoulli. (See his Works, Vol. 111. p. 447.)

For the perpendicular from the origin on the tangent we find

[merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small]

The subtangent = a, and is therefore constant.

[blocks in formation]

The subnormal = 2. The normal = 2 (a2 + y2)♪.

a

(6)

a

[merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][ocr errors][ocr errors]

The subnormal

[blocks in formation]

23

c). The normal

The tangent=

[merged small][merged small][ocr errors][merged small][merged small][merged small]

(y3 — c2)} *

[merged small][ocr errors]

we find the equation to the tangent to be

mx (y' − y) = y (x'′ − x).

[merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][ocr errors][merged small][merged small][merged small][merged small][merged small][ocr errors]

(9) The equation to the cycloid referred to its vertex is

[merged small][merged small][merged small][ocr errors]

AB (fig. 19) being the axis of x.

If M be the point where the ordinate meets the generating circle, and if we join MA, MB, then

[merged small][merged small][ocr errors][merged small][merged small][ocr errors][merged small][merged small]

That is to say, the tangent to the cycloid is parallel to the chord of the generating circle. The normal is evidently parallel to the other chord MB. Hence also the angle which two tangents make with each other is equal to the angle between the corresponding chords of the generating circle.

Y1 = y - (2axa)

=

PN- MN = PM.

But from the generation of the curve, PM is equal to the

arc of the circle AM, therefore yo = are AM.

« НазадПродовжити »