Зображення сторінки
PDF
ePub
[blocks in formation]

Starting from these values and giving p successively all integer values from 0 upwards, we find

[blocks in formation]

When n is an even integer the second line, being multiplied by the cosine of an odd multiple of, vanishes, and the

2

first line alone remains: when n is an odd integer the first line vanishes and the second line alone remains. When n is a fraction both lines must be retained, except for some particular values of n which cause the factor of one or other series to vanish.

find

(7) To expand sin na in ascending powers of sin a. Proceeding in the same manner as in the last example, we

[blocks in formation]

When n is an integer the first series always vanishes, and the second is positive or negative according as (n − 1) r is even or odd. When n is odd the second series terminates; when n is even it continues to infinity. When n is fractional both series coexist, except for particular values of r.

(8) To expand cos na in ascending powers of sin æ, and sin na in ascending powers of cos x.

Proceeding as in the last two examples, we find

[blocks in formation]

When n is an integer the second line always disappears, and the first series terminates when n is even, and does not terminate when n is odd. When n is fractional both series are retained, except for particular values of r.

[blocks in formation]

When n is an odd integer the first line, when n is even the second, alone remains; but when n is fractional both series are retained except for particular values of r. In no case do the series ever terminate.

For an exposition of the difficulties concerning these expansions, and the discussions to which they have given rise, the reader is referred to Poinsot's Memoir on Angular Sections, where the complete form of these expansions was first given.

[merged small][ocr errors][merged small]

If we were to endeavour to effect this by means of Maclaurin's Theorem, we should find that all the differential

[merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][ocr errors][ocr errors][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small]
[merged small][merged small][merged small][merged small][ocr errors][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small]

odd powers of x above the first; for if we assume

[merged small][merged small][ocr errors][ocr errors][merged small][ocr errors][merged small][merged small][ocr errors][subsumed][merged small][merged small][merged small][merged small][merged small]

and comparing the coefficients of like powers of x,

[merged small][merged small][ocr errors][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][ocr errors][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small]

B1, B3, &c. being coefficients to be determined.

[merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small]
[ocr errors]

If therefore Can be the coefficient of a*" in

[ocr errors][merged small]

+1

the equation

[merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small]

and if in Ex. (27) of Chap. 11. Sect. 1, we make r = 2n − 1,

[merged small][merged small][merged small][merged small][merged small][merged small][merged small][subsumed][merged small][merged small][ocr errors][merged small][ocr errors][merged small][merged small][merged small][subsumed][merged small][merged small][ocr errors][merged small][ocr errors][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][subsumed][merged small][merged small][merged small][merged small][ocr errors]

These coefficients B1, B... B2-1, are of great use in the expansion of series, and bear the name of Bernoulli's numbers, having been first noticed by James Bernoulli in his posthumous work the Ars Conjectandi, p. 97; but the complete investigation of the law of their formation is due to Euler, Calc. Diff. Part II, Cap. v.

(10) To expand tan 0 by means of the numbers of Bernoulli

[merged small][merged small][subsumed][ocr errors][subsumed][subsumed]

The coefficient of 02-1 in the expansion of this function

will be the same as that of a2 in the development of

[ocr errors]
[ocr errors]

multiplied by 22" (-)". By what has preceded it appears, therefore, to be equal to

[blocks in formation]
[merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small]

(11) To expand cot by means of Bernoulli's numbers.

[blocks in formation]

Now the coefficient of 0-1 in this expression is the same

[merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small]
« НазадПродовжити »